Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Retrovirology ; 13: 4, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26754835

RESUMO

BACKGROUND: Bovine leukemia virus (BLV) is a member of retroviridae family, together with human T cell leukemia virus types 1 and 2 (HTLV-1 and -2) belonging to the genes deltaretrovirus, and infects cattle worldwide. Previous studies have classified the env sequences of BLV provirus from different geographic locations into eight genetic groups. To investigate the genetic variability of BLV in South America, we performed phylogenetic analyses of whole genome and partial env gp51 sequences of BLV strains isolated from Peru, Paraguay and Bolivia, for which no the molecular characteristics of BLV have previously been published, and discovered a novel BLV genotype, genotype-9, in Bolivia. RESULTS: In Peru and Paraguay, 42.3 % (139/328) and over 50 % (76/139) of samples, respectively, were BLV positive. In Bolivia, the BLV infection rate was up to 30 % (156/507) at the individual level. In Argentina, 325/420 samples were BLV positive, with a BLV prevalence of 77.4 % at the individual level and up to 90.9 % at herd level. By contrast, relatively few BLV positive samples were detected in Chile, with a maximum of 29.1 % BLV infection at the individual level. We performed phylogenetic analyses using two different approaches, maximum likelihood (ML) tree and Bayesian inference, using 35 distinct partial env gp51 sequences from BLV strains isolated from Peru, Paraguay, and Bolivia, and 74 known BLV strains, representing eight different BLV genotypes from various geographical locations worldwide. The results indicated that Peruvian and Paraguayan BLV strains were grouped into genotypes-1, -2, and -6, while those from Bolivia were clustered into genotypes-1, -2, and -6, and a new genotype, genotype-9. Interestingly, these results were confirmed using ML phylogenetic analysis of whole genome sequences obtained by next generation sequencing of 25 BLV strains, assigned to four different genotypes (genotypes-1, -2, -6, and -9) from Peru, Paraguay, and Bolivia. Comparative analyses of complete genome sequences clearly showed some specific substitutions, in both structural and non-structural BLV genes, distinguishing the novel genotype-9 from known genotypes. CONCLUSIONS: Our results demonstrate widespread BLV infection in South American cattle and the existence of a new BLV genotype-9 in Bolivia. We conclude that at least seven BLV genotypes (genotypes-1, -2, -4, -5, -6, -7, and -9) are circulating in South America.


Assuntos
Leucose Enzoótica Bovina/virologia , Evolução Molecular , Genótipo , Vírus da Leucemia Bovina/classificação , Vírus da Leucemia Bovina/isolamento & purificação , Animais , Bolívia/epidemiologia , Bovinos , Análise por Conglomerados , Leucose Enzoótica Bovina/epidemiologia , Genoma Viral , Vírus da Leucemia Bovina/genética , Paraguai/epidemiologia , Peru/epidemiologia , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência
2.
Gene ; 472(1-2): 42-9, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20965236

RESUMO

In cattle, bovine leukocyte antigens (BoLAs) have been extensively used as markers for bovine diseases and immunological traits. In this study, we sequenced alleles of the BoLA class II loci, BoLA-DRB3 and BoLA-DQA1, from 650 Japanese cattle from six herds [three herds (507 animals) of Japanese Black cattle and three herds (143 animals) of Holstein cattle] using polymerase chain reaction-sequence-based typing (PCR-SBT) methods. We identified 26 previously reported distinct DRB3 alleles in the two populations: 22 in Japanese Black and 17 in Holstein. The number of DRB3 alleles detected in each herd ranged from 9 to 20. Next, we identified 15 previously reported distinct DQA1 alleles: 13 in Japanese Black and 10 in Holstein. The number of alleles in each herd ranged from 6 to 10. Thus, allelic divergence is significantly greater for DRB3 than for DQA1. A population tree on the basis of the frequencies of the DRB3 and DQA1 alleles showed that, although the genetic distance differed significantly between the two cattle breeds, it was closely related within the three herds of each breed. In addition, Wu-Kabat variability analysis indicated that the DRB3 gene was more polymorphic than the DQA1 gene in both breeds and in all herds, and that the majority of the hypervariable positions within both loci corresponded to pocket-forming residues. The DRB3 and DQA1 heterozygosity for both breeds within each herd were calculated based on the Hardy-Weinberg equilibrium. Only one Japanese Black herd showed a significant difference between the expected and observed heterozygosity at both loci. This is the first report presenting a detailed study of the allelic distribution of BoLA-DRB3 and -DQA1 genes in Japanese Black and Holstein cattle from different farms in Japan. These results may help to develop improved livestock breeding strategies in the future.


Assuntos
Alelos , Bovinos/genética , Genes MHC da Classe II/genética , Variação Genética , Antígenos de Histocompatibilidade Classe II/genética , Sequência de Aminoácidos , Animais , Cruzamento , Frequência do Gene , Japão , Gado , Filogenia , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...